# Count pairs in an array such that the absolute difference between them is ≥ K

Given an array **arr[]** and an integer **K**, the task is to find the count of pairs **(arr[i], arr[j])** from the array such that **|arr[i] – arr[j]| ≥ K**. **Note** that **(arr[i], arr[j])** and **arr[j], arr[i]** will be counted only once.**Examples:**

Input:arr[] = {1, 2, 3, 4}, K = 2Output:3

All valid pairs are (1, 3), (1, 4) and (2, 4)Input:arr[] = {7, 4, 12, 56, 123}, K = 50Output:5

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the

DSA Self Paced Courseat a student-friendly price and become industry ready. To complete your preparation from learning a language to DS Algo and many more, please referComplete Interview Preparation Course.In case you wish to attend

live classeswith experts, please referDSA Live Classes for Working ProfessionalsandCompetitive Programming Live for Students.

**Approach:** Sort the given array. Now for every element **arr[i]**, find the first element on the right **arr[j]** such that **(arr[j] – arr[i]) ≥ K**. This is because after this element, every element will satisfy the same condition with **arr[i]** as the array is sorted and the count of elements that will make a valid pair with **arr[i]** will be **(N – j)** where **N** is the size of the given array.

Below is the implementation of the above approach:

## C++

`// C++ implementation of the approach` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// Function to return the count of required pairs` `int` `count(` `int` `arr[], ` `int` `n, ` `int` `k)` `{` ` ` `// Sort the given array` ` ` `sort(arr, arr + n);` ` ` `// To store the required count` ` ` `int` `cnt = 0;` ` ` `int` `i = 0, j = 1;` ` ` `while` `(i < n && j < n) {` ` ` `// Update j such that it is always > i` ` ` `j = (j <= i) ? (i + 1) : j;` ` ` `// Find the first element arr[j] such that` ` ` `// (arr[j] - arr[i]) >= K` ` ` `// This is because after this element, all` ` ` `// the elements will have absolute difference` ` ` `// with arr[i] >= k and the count of` ` ` `// valid pairs will be (n - j)` ` ` `while` `(j < n && (arr[j] - arr[i]) < k)` ` ` `j++;` ` ` `// Update the count of valid pairs` ` ` `cnt += (n - j);` ` ` `// Get to the next element to repeat the steps` ` ` `i++;` ` ` `}` ` ` `// Return the count` ` ` `return` `cnt;` `}` `// Driver code` `int` `main()` `{` ` ` `int` `arr[] = { 1, 2, 3, 4 };` ` ` `int` `n = ` `sizeof` `(arr) / ` `sizeof` `(arr[0]);` ` ` `int` `k = 2;` ` ` `cout << count(arr, n, k);` ` ` `return` `0;` `}` |

## Java

`// Java implementation of the approach` `import` `java.util.*;` `class` `solution` `{` `// Function to return the count of required pairs` `static` `int` `count(` `int` `arr[], ` `int` `n, ` `int` `k)` `{` ` ` `// Sort the given array` ` ` `Arrays.sort(arr);` ` ` `// To store the required count` ` ` `int` `cnt = ` `0` `;` ` ` `int` `i = ` `0` `, j = ` `1` `;` ` ` `while` `(i < n && j < n) {` ` ` `// Update j such that it is always > i` ` ` `j = (j <= i) ? (i + ` `1` `) : j;` ` ` `// Find the first element arr[j] such that` ` ` `// (arr[j] - arr[i]) >= K` ` ` `// This is because after this element, all` ` ` `// the elements will have absolute difference` ` ` `// with arr[i] >= k and the count of` ` ` `// valid pairs will be (n - j)` ` ` `while` `(j < n && (arr[j] - arr[i]) < k)` ` ` `j++;` ` ` `// Update the count of valid pairs` ` ` `cnt += (n - j);` ` ` `// Get to the next element to repeat the steps` ` ` `i++;` ` ` `}` ` ` `// Return the count` ` ` `return` `cnt;` `}` `// Driver code` `public` `static` `void` `main(String args[])` `{` ` ` `int` `arr[] = { ` `1` `, ` `2` `, ` `3` `, ` `4` `};` ` ` `int` `n = arr.length;` ` ` `int` `k = ` `2` `;` ` ` `System.out.println(count(arr, n, k));` `}` `}` |

## Python3

`# Python3 implementation of the approach` `# Function to return the count of required pairs` `def` `count(arr, n, k) :` ` ` `# Sort the given array` ` ` `arr.sort();` ` ` `# To store the required count` ` ` `cnt ` `=` `0` `;` ` ` `i ` `=` `0` `; j ` `=` `1` `;` ` ` `while` `(i < n ` `and` `j < n) :` ` ` `# Update j such that it is always > i` ` ` `if` `j <` `=` `i :` ` ` `j ` `=` `i ` `+` `1` ` ` `else` `:` ` ` `j ` `=` `j` ` ` `# Find the first element arr[j] such that` ` ` `# (arr[j] - arr[i]) >= K` ` ` `# This is because after this element, all` ` ` `# the elements will have absolute difference` ` ` `# with arr[i] >= k and the count of` ` ` `# valid pairs will be (n - j)` ` ` `while` `(j < n ` `and` `(arr[j] ` `-` `arr[i]) < k) :` ` ` `j ` `+` `=` `1` `;` ` ` `# Update the count of valid pairs` ` ` `cnt ` `+` `=` `(n ` `-` `j);` ` ` `# Get to the next element to repeat the steps` ` ` `i ` `+` `=` `1` `;` ` ` `# Return the count` ` ` `return` `cnt;` `# Driver code` `if` `__name__ ` `=` `=` `"__main__"` `:` ` ` `arr ` `=` `[ ` `1` `, ` `2` `, ` `3` `, ` `4` `];` ` ` `n ` `=` `len` `(arr);` ` ` `k ` `=` `2` `;` ` ` `print` `(count(arr, n, k));` ` ` `# This code is contributed by AnkitRai01` |

## C#

`// C# implementation of the approach` `using` `System;` `class` `GFG` `{` ` ` `// Function to return the count of required pairs` `static` `int` `count(` `int` `[]arr, ` `int` `n, ` `int` `k)` `{` ` ` `// Sort the given array` ` ` `Array.Sort(arr);` ` ` `// To store the required count` ` ` `int` `cnt = 0;` ` ` `int` `i = 0, j = 1;` ` ` `while` `(i < n && j < n)` ` ` `{` ` ` `// Update j such that it is always > i` ` ` `j = (j <= i) ? (i + 1) : j;` ` ` `// Find the first element arr[j] such that` ` ` `// (arr[j] - arr[i]) >= K` ` ` `// This is because after this element, all` ` ` `// the elements will have absolute difference` ` ` `// with arr[i] >= k and the count of` ` ` `// valid pairs will be (n - j)` ` ` `while` `(j < n && (arr[j] - arr[i]) < k)` ` ` `j++;` ` ` `// Update the count of valid pairs` ` ` `cnt += (n - j);` ` ` `// Get to the next element to repeat the steps` ` ` `i++;` ` ` `}` ` ` `// Return the count` ` ` `return` `cnt;` `}` `// Driver code` `static` `public` `void` `Main ()` `{` ` ` ` ` `int` `[]arr = { 1, 2, 3, 4 };` ` ` `int` `n = arr.Length;` ` ` `int` `k = 2;` ` ` `Console.Write(count(arr, n, k));` `}` `}` `// This code is contributed by jit_t.` |

## Javascript

`<script>` `// JavaScript implementation of the approach` `// Function to return the count of required pairs` `function` `count(arr, n, k) {` ` ` `// Sort the given array` ` ` `arr.sort();` ` ` `// To store the required count` ` ` `var` `cnt = 0;` ` ` `var` `i = 0;` ` ` `var` `j = 1;` ` ` `while` `(i < n && j < n) {` ` ` `// Update j such that it is always > i` ` ` `if` `(j <= i)` ` ` `j = i + 1` ` ` `else` ` ` `j = j` ` ` `// Find the first element arr[j] such that` ` ` `// (arr[j] - arr[i]) >= K` ` ` `// This is because after this element, all` ` ` `// the elements will have absolute difference` ` ` `// with arr[i] >= k and the count of` ` ` `// valid pairs will be (n - j)` ` ` `while` `(j < n && (arr[j] - arr[i]) < k)` ` ` `j += 1;` ` ` `// Update the count of valid pairs` ` ` `cnt += (n - j);` ` ` `// Get to the next element to repeat the steps` ` ` `i += 1;` ` ` `}` ` ` `// Return the count` ` ` `return` `cnt;` `}` `// Driver code ` `var` `arr = [ 1, 2, 3, 4 ];` `var` `n = arr.length;` `var` `k = 2;` `document.write(count(arr, n, k));` ` ` `// This code is contributed by AnkThon` `</script>` |

**Output:**

3