FreeIPA hands-on tutorial
Fedora 18 update: Active Directory trusts and more

Alexander Bokovoy
Jakub Hrozek
Martin Košek

Red Hat Inc.

LinuxCon Europe
November 5th, 2012
1 Preparation
2 Installation
3 Active Directory trusts
4 Users
5 Certificates, keytabs
6 HBAC
7 RBAC
8 Replication
9 Other features
10 SSSD: More than a FreeIPA client
Section 1
Preparation
Lab structure

- Use cases will use 3 VMs and the host machine
 - **server**: server.ipa-X.example.com - will host an IPA server
 - **replica**: replica.ipa-X.example.com - will host an IPA replica
 - **client**: client.ipa-X.example.com - will host IPA client with a web server

- Instructor machine hosts:
 - **IPA**: server.ipa-0.example.com - will host an IPA server
 - **IPA**: replica.ipa-0.example.com - will host an IPA replica
 - **IPA**: client.ipa-0.example.com - will host an IPA client with a web server
 - **AD**: ad.example.com - Active Directory domain
 - **AD**: dc.ad.example.com - Active Directory domain controller
Section 2
Installation
Install IPA server

- Check install options in `ipa-server-install --help`
 - Core options: `--external-ca`, `--setup-dns`, `--selfsign`
- Most common install issues:
 - broken DNS, bad `/etc/hosts` configuration
 - `--no-host-dns`, `--setup-dns`
 - Remains after the last unsuccessful install
 - `/var/lib/ipa/sysrestore/`
 - Time issues (Kerberos time sensitive) - on clients, replicas

- `ipa-server-install --setup-dns`
Install IPA server (cont.)

- `kinit as admin`, check tickets with `klist`
- Check logs (useful for debugging):
 - `/var/log/pki-ca/debug`
 - `/var/log/pki-ca-install.log`
 - `/var/log/dirsrv/` (permissions!)
 - `/var/log/messages`
- Try `ipactl` command
- See certificates tracked in certmonger:
 - `ipa-getcert list`
- Check main IPA configuration: `/etc/ipa/default.conf`
 - base DN, realm
- Check automatically created DNS records (A, SRV)
 - `ipa dnszone-find`
 - `ipa dnsrecord-find`
- Check Web UI interface
Section 3
Active Directory trusts
Kerberos cross-forest trusts

FreeIPA deployment is a fully managed Kerberos realm
- Can be integrated with Windows as RFC4120-compliant Kerberos realm
- Traditional Kerberos trust management applies:
 - on GNU/Linux side `~/.k5login` should be defined to impersonate users with identities
 - on Active Directory side manual mapping is performed with special tools in a similar way
- Does not scale well for thousands of users and hosts:
 - a foreign realm principal impersonates our realm’s user
 - requires additional management of special users to impersonate doubling the management effort
 - mapping has to happen on every single machine. Manually?
Kerberos cross-forest trusts

Active Directory native cross forest trusts

- Require two Active Directory domains
- AD domain establishes trust with another AD domain via LSA RPC
- AD uses LSA RPC and Global Catalog to map incoming principals to SIDs
 - technically: KDC + CLDAP + LSA RPC + LDAP on a port 3268
 - FreeIPA provides CLDAP, KDC and LDAP, Samba provides LSA RPC
- Stage 1: allow AD users to connect to FreeIPA services
 - e.g. PuTTY from Windows machine connecting to FreeIPA ssh service
- Stage 2: allow FreeIPA users to interactively log in into AD machines
 - Requires support for Global Catalog on FreeIPA server side
 - not implemented yet
FreeIPA v3 architecture

Full overview is available at http://freeipa.org/page/IPAv3_Architecture
Kerberos cross-forest trusts

What was missing?

- Samba passdb backend to FreeIPA supporting trust storage and retrieval
- CLDAP plugin to FreeIPA to respond on AD discovery queries
- FreeIPA KDC backend to generate MS PAC and support case-insensitive searches
- Configuration tools to setup trusts
Kerberos cross-forest trusts

FreeIPA passdb backend:

- Expansion of traditional LDAP passdb backend
- New schema objects and attributes to support trusted domain information
- Support for uid/gid ranges for multi-master replicas
- Kerberos principal creation for foreign domain account

FreeIPA KDC backend:

- Generates MS PAC information out of LDAP info and add to the ticket
- Allows to accept principals and tickets from a trusted cross forest realm
- Verifies and sign MS PAC coming from a trusted cross forest realm
Kerberos cross-forest trusts

FreeIPA configuration tools:

- FreeIPA has command line (CLI) and Web user interfaces
- `ipa trust-add` creates new cross-forest trust
 - CLI operates with Kerberos authentication
 - Request is sent to FreeIPA server via XML-RPC over HTTPS with Kerberos auth
 - FreeIPA uses S4U2Proxy Kerberos feature to allow constrained delegation
 - Samba 4 Python bindings are used to establish trust
 - Code runs under non-privileged account (apache)
 - Uses Kerberos ticket obtained via XML-RPC with the help of mod_kerb_auth
 - Issues Kerberos-authenticated LSA RPC requests to a local smbd
 - Uses AD credentials or shared secret passed via XML-RPC request to talk to AD DC
Install Active Directory trusts support

- Pre-requisites: freeipa-server-trust-ad package
- Run `ipa-adtrust-install` as `root` to
 - define NetBIOS (short) name for the domain
 - set up Samba to use FreeIPA for searching users and storing trusted domains information
 - set up DNS service records expected by the Active Directory clients
 - set up additional plugins in 389-ds directory server
 - configure Kerberos KDC to handle MS-PAC in trusted tickets
- Caveats:
 - Check that DNS resolution works from both Active Directory and FreeIPA sides
 - If there is no common upstream DNS server, set up DNS forwarders
- After `ipa-adtrust-install` run we are ready to create AD trusts!
Create trust to Active Directory domain

Following command creates the trust

- `ipa trust-add [--type=ad] ad.example.com --admin Administrator --password`

- **Explanation:**
 - `--type=ad` — trust type (defaults to Active Directory trust)
 - `ad.example.com` — DNS name of Active Directory domain
 - `--admin NAME` — name of administrative account from Active Directory capable to create trusts
 - `--password` — ask for the AD admin password

- **Typical issues:**
 - Active Directory is relying on DNS SRV records on resource discovery.
 - Kerberos is relying on clock synchronization — more than 5 minutes skew will break things
 - `ipa-adtrust-install` suggests firewall configuration update, don't ignore it!
Section 4

Users
User management, account lockout

- **As admin:**
 - Add new user we will use for tests:
 - `ipa user-add --first=Test --last=User ruser`
 - Try editing user’s attribute:
 - `ipa user-mod ruser --shell=/bin/bash`

- **As ruser:**
 - `kinit` 3 times with incorrect password
 - You can check `ipa user-status ruser` in the process (as admin)
 - Fourth `kinit` will be rejected

- **As admin:**
 - `ipa user-status ruser` - account is locked

- **As admin, you have 2 ways to unlock user:**
 - `ipa unlock ruser`
 - `ipa passwd user` - resets the password

- **ruser** is now able to log in
Allow access from trusted domain

- Trusted domain users authenticate with Kerberos principals
 $user@ad.example.com$
- These principals are mapped automatically to uids with SSSD, Winbinddd, and 389-ds plugins
- Each trusted domain user receives its own primary group equal to the \texttt{uid} of the user
- To apply access controls, trust domain users and groups should belong to POSIX groups
 - First map security identifier (SID) to non-POSIX group in FreeIPA
 - Then include non-POSIX group to existing POSIX group in FreeIPA
 - Use the POSIX group in all access controls (HBAC and SUDO rules)
Allow access from trusted domain

Following sequence will map group `AD\Domain users` to POSIX group `strangers` with use of `strangers_ext` non-POSIX group:

- `ipa group-add strangers_ext --external`
- `ipa group-add-member strangers_ext --external 'AD\Domain users'`
- `ipa group-add strangers`
- `ipa group-add-member strangers --groups strangers_ext`
Allow access from trusted domain (cont.)

Additionally, every host that will provide services to trusted domain users, needs to have SSSD and `krb5.conf` configured to recognize them.

Listing 1: krb5.conf

```ini
[libdefaults]
...
dns_lookup_kdc = true
....

[realms]
IPA-X.EXAMPLE.COM = {
....
  auth_to_local = \n    RULE:[1:$1@$0](^.*@AD.EXAMPLE.COM$)s/@AD.EXAMPLE.COM/@ad.example.com/
  auth_to_local = DEFAULT
}
```
Allow access from trusted domain (cont.)

In `sssd.conf` 'subdomains_provider = ipa' ensures that sssd will be able to look up users in trusted domains. 'services = ..., pac' ensures that user membership information from MS PAC (http://tools.ietf.org/html/draft-brezak-win2k-krb-authz-01) is evaluated as well.

Listing 2: sssd.conf

```
[domain/ipa-X.example.com]
...
  subdomains_provider = ipa
...
[sssd]
  services = nss, pam, ssh, pac
```
Section 5
Certificates, keytabs
Let’s now build a secured web server that would accept trusted users

- Log in to **client** machine
- Make sure that IPA server is resolvable
- `ipa-client-install`
- Prepare content for `httpd`:
 - `cp workshop.conf /etc/httpd/conf.d/workshop.conf`
 - `cp workshop.wsgi /var/www/cgi-bin/workshop.wsgi`
- Create the IPA service entry for `httpd`:
 - `ipa service-add HTTP/‘hostname’`
- Configure SSSD and Kerberos to accept trusted users
Building a secured web server: SSL certificate

- Create NSS certificate database for httpd
 - mkdir /etc/httpd/alias; cd /etc/httpd/alias
 - certutil -N -d .
 - chown :apache *.db && chmod g+rw *.db
 - certutil -G -d .
 - certutil -A -d . -n ’IPA CA’ -t CT,, -a < /etc/ipa/ca.crt
Building a secured web server: SSL certificate (cont.)

- Request a signed certificate for the service
 - `certutil -R -d . -a -g 2048 -s CN='hostname',O=IPA-X.EXAMPLE.COM > web.csr`
 - `ipa cert-request --principal=HTTP/'hostname' web.csr`
 - `ipa cert-show $SERIAL_NO --out=web.crt`
 - `certutil -A -d . -n Server-Cert -t u,u,u -i web.crt`
 - `certutil -L -d . -n Server-Cert`
 - `certutil -V -u V -d . -n Server-Cert - valid certificate`

- Check `/etc/httpd/conf.d/nss.conf` and start `httpd`
Building a secured web server: Kerberos authentication

- Retrieve a keytab for httpd service
 - `ipa-getkeytab -p HTTP/‘hostname‘ -k http.keytab -s server`
 - `ipa service-show HTTP/‘hostname‘ - keytab indicator is True`
 - `klist -kt http.keytab`

- Configure httpd to use the keytab
 - `mv http.keytab /etc/httpd/conf/`
 - `chown apache:apache /etc/httpd/conf/http.keytab`
 - `chmod 0400 /etc/httpd/conf/http.keytab`
 - Update `/etc/httpd/conf.d/workshop.conf` and enable Kerberos authentication
 - Restart httpd

- Test the page secured via Kerberos authentication
 - Open with web browser, OR
 - `curl -k --negotiate -u : https://‘hostname’`
Section 6
HBAC
Host Based Access Control - Authorization

- Check `allow_all` HBAC rule
 - Allows users to access all services in IPA realm
- Disable `allow_all` HBAC rule → `ruser` cannot log in to **client**
- As **admin**:
 - Create hostgroup `webservers`
 - Add **client** to `webservers`
 - Create HBAC rule `allow_on_client` and then:
 - `ipa hbacrule-add-host allow_on_client --hostgroups=webservers`
 - `ipa hbacrule-add-user allow_on_client --users=ruser`
 - `ipa hbacrule-add-group allow_on_client --groups=strangers`
 - `ipa hbacrule-add-service allow_on_client --hbacsvcs=sshd,login`

- Verify the rule:
 - Log in to **client** with `ruser`, **admin**
 - Check `hbactest` in CLI and Web UI
 - Try to log in from Windows machine using PuTTY and web interface

Enable `allow_all` rule again
Section 7
RBAC
Role Based Access Control

- As ruser:
 - ipa user-add --first=John --last=Doe jdoe - fails due to missing privileges
- As admin:
 - ipa role-find
 - ipa role-add-member 'User Administrator'
 --users=ruser
- As ruser:
 - ipa user-add --first=John --last=Doe jdoe - succeeds
 - ipa user-del jdoe
Section 8
Replication
Create a replica

- Prepare replica info file and install replica
 - `ipa-replica-prepare`
 - `ipa-replica-install`
- Notice `ipa-replica-conncheck` is run before installation
- Check logs (`ipareplica-install`)
- Install DNS service on replica as well
 - `ipa-dns-install`
- To debug replica agreements:
 - View agreements with `ipa-replica-manage list`
 - Run raw LDAP searches:
 - `ldapsearch -h localhost -Y GSSAPI -b cn=config "(objectclass=nsds5ReplicationAgreement)"`
 - `ldapsearch -h localhost -Y GSSAPI -b cn=config "(nsDS5ReplicaId=*)"`
Section 9

Other features
- **SELinux user mappings**
 - per-user per-host contexts the user receives
 - requires SSSD on the client side

- **Centralized management of SUDO rules**
 - SUDO can enforce either directly or via the SSSD

- **Centralized management of automounter maps**
 - consumable directly or via the SSSD as well
Section 10

SSSD: More than a FreeIPA client
SSSD

- a client side of the IPA, but can be (and often is!) used standalone
- a system daemon that provides its own NSS and PAM modules
 - the modules just proxy requests to the SSSD
- the daemon is stateful
 - keeps track of network status, server availability
- supports several back ends
 - LDAP
 - Kerberos
 - IPA
 - Active Directory (new in 1.9.0)
New features of the SSSD in Fedora 18

- a native Active Directory provider
- caching of SUDO rules
- caching of automounter maps
- the ability to act as a client for setups with AD trusts
- notable performance improvements
The Active Directory Provider

- LDAP + Kerberos underneath
- uses the AD-specific tokenGroups attribute to optimize group lookups
- defaults tailored to match the Active Directory environments
- enrollment is a separate issue
 - provided by the realmd project
 - new in Fedora 18, very easy to use
 - `yum install realmd`
 - `realm join --user Username ad.example.com`
- both server and desktop use case
SSSD: More than a FreeIPA client

Integration with the SUDO utility

- SSSD acts as a proxy between SUDO and LDAP
- SSSD provides a persistent cache and also smart and configurable refresh rules
- requires sudo 1.8.6p3 or newer
- IPA supports sudoers compat tree in ou=sudoers,$BASEDN
 - ldapsearch -Y GSSAPI -b "ou=sudoers,$BASEDN"
 - sudo_provider = ldap in sssd.conf
 - sudoers: files sss in nsswitch.conf
- Try to create sudo rules in IPA, see results in sudoers compat tree
The end.

Thanks for listening.